Optional
smoothing: numberThe amount of smoothing applied between frames.
Optional
options: Partial<MeterOptions>Readonly
contextThe context belonging to the node.
Set this debug flag to log all events that happen in this class.
The signal to be analysed
Readonly
nameIf the output should be in decibels or normal range between 0-1. If normalRange
is false,
the output range will be the measured decibel value, otherwise the decibel value will be converted to
the range of 0-1
The output is just a pass through of the input
A value from between 0 and 1 where 0 represents no time averaging with the last analysis frame.
Static
versionThe version number semver
The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The number of channels of analysis.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The duration in seconds of one sample.
Connect the output of this node to the rest of the nodes in series.
Rest
...nodes: InputNode[]const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/handdrum-loop.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect to
The output to connect from
The input to connect to
disconnect the output
Optional
destination: InputNodeconnect the output of this node to the rest of the nodes in parallel.
Rest
...nodes: InputNode[]const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/conga-rhythm.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Use getValue instead. For the previous getValue behavior, use DCMeter.
Get the current value of the incoming signal.
Output is in decibels when normalRange is false
.
If channels = 1, then the output is a single number
representing the value of the input signal. When channels > 1,
then each channel is returned as a value in a number array.
Set multiple properties at once with an object.
const filter = new Tone.Filter().toDestination();
// set values using an object
filter.set({
frequency: "C6",
type: "highpass"
});
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/Analogsynth_octaves_highmid.mp3").connect(filter);
player.autostart = true;
Convert the incoming time to seconds. This is calculated against the current TransportClass bpm
const gain = new Tone.Gain();
setInterval(() => console.log(gain.toSeconds("4n")), 100);
// ramp the tempo to 60 bpm over 30 seconds
Tone.getTransport().bpm.rampTo(60, 30);
Static
get
Meter gets the RMS of an input signal. It can also get the raw value of the input signal. Setting
normalRange
totrue
will covert the output to a range of 0-1. See an example using a graphical display here.See
DCMeter.
Example