Multiply < TypeName >

  • TypeName: "number" | "positive"

Multiply two incoming signals. Or, if a number is given in the constructor, multiplies the incoming signal by that value.


// multiply two signals
const mult = new Tone.Multiply();
const sigA = new Tone.Signal(3);
const sigB = new Tone.Signal(4);
sigA.connect(mult);
sigB.connect(mult.factor);
// output of mult is 12.

// multiply a signal and a number
const mult = new Tone.Multiply(10);
const sig = new Tone.Signal(2).connect(mult);
// the output of mult is 20.

Hierarchy

Constructor

new Multiply (
value?:undefined | number

Constant value to multiple

) => Multiply
new Multiply (
options?:Partial<SignalOptions<TypeName > >
) => Multiply

Properties

blockTime #

readonly Seconds

The number of seconds of 1 processing block (128 samples)


console.log(Tone.Destination.blockTime);

channelCount #

number

channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.

channelCountMode #

ChannelCountMode

channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.

  • "max" - computedNumberOfChannels is the maximum of the number of channels of all connections to an input. In this mode channelCount is ignored.
  • "clamped-max" - computedNumberOfChannels is determined as for "max" and then clamped to a maximum value of the given channelCount.
  • "explicit" - computedNumberOfChannels is the exact value as specified by the channelCount.

channelInterpretation #

ChannelInterpretation

channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".

context #

BaseContext

The context belonging to the node.

convert #

boolean

If the value should be converted or not

debug #

boolean

Set this debug flag to log all events that happen in this class.

disposed #

readonly boolean

Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.

factor #

Param<TypeName >

The multiplication factor. Can be set directly or a signal can be connected to it.

input #

InputNode

The multiplicand input.

maxValue #

readonly number

The maximum value of the output given the units

minValue #

readonly number

The minimum value of the output given the units

name #

string

numberOfInputs #

readonly number

The number of inputs feeding into the AudioNode. For source nodes, this will be 0.


const node = new Tone.Gain();
console.log(node.numberOfInputs);

numberOfOutputs #

readonly number

The number of outputs of the AudioNode.


const node = new Tone.Gain();
console.log(node.numberOfOutputs);

output #

OutputNode

The product of the input and factor

overridden #

boolean

True if the signal value is being overridden by a connected signal. Internal use only.

override #

false

Indicates if the value should be overridden on connection

sampleTime #

readonly Seconds

The duration in seconds of one sample.


console.log(Tone.Transport.sampleTime);

units #

readonly UnitName

The unit type

value #

[object Object]

The current value of the parameter. Setting this value is equivalent to setValueAtTime(value, context.currentTime)

static version #

string

The version number semver

Methods

apply #

apply (
param:Param | AudioParam
) => this

cancelAndHoldAtTime #

This is similar to cancelScheduledValues except it holds the automated value at time until the next automated event.


return Tone.Offline(() => {
	const signal = new Tone.Signal(0).toDestination();
	signal.linearRampTo(1, 0.5, 0);
	signal.cancelAndHoldAtTime(0.3);
}, 0.5, 1);
cancelAndHoldAtTime (
time:Time
) => this

cancelScheduledValues #

Cancels all scheduled parameter changes with times greater than or equal to startTime.


return Tone.Offline(() => {
	const signal = new Tone.Signal(0).toDestination();
	signal.setValueAtTime(0.1, 0.1);
	signal.setValueAtTime(0.2, 0.2);
	signal.setValueAtTime(0.3, 0.3);
	signal.setValueAtTime(0.4, 0.4);
	// cancels the last two scheduled changes
	signal.cancelScheduledValues(0.3);
}, 0.5, 1);
cancelScheduledValues (
time:Time
) => this

chain #

Connect the output of this node to the rest of the nodes in series.


const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/handdrum-loop.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
chain (
...nodes:InputNode []
) => this

connect #

connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode

connect (
destination:InputNode ,
outputNum= 0:number ,
inputNum= 0:number
) => this

disconnect #

disconnect the output

disconnect (
destination?:InputNode ,
outputNum= 0:number ,
inputNum= 0:number
) => this

dispose #

Dispose and disconnect

dispose ( ) => this

exponentialApproachValueAtTime #

Start exponentially approaching the target value at the given time. Since it is an exponential approach it will continue approaching after the ramp duration. The rampTime is the time that it takes to reach over 99% of the way towards the value. This methods is similar to setTargetAtTime except the third argument is a time instead of a 'timeConstant'


const osc = new Tone.Oscillator().toDestination().start();
// exponential approach over 4 seconds starting in 1 second
osc.frequency.exponentialApproachValueAtTime("C4", "+1", 4);
exponentialApproachValueAtTime (
value:[object Object] ,
time:Time ,
rampTime:Time
) => this

exponentialRampTo #

Schedules an exponential continuous change in parameter value from the current time and current value to the given value over the duration of the rampTime.


const delay = new Tone.FeedbackDelay(0.5, 0.98).toDestination();
// a short burst of noise through the feedback delay
const noise = new Tone.Noise().connect(delay).start().stop("+0.1");
// making the delay time shorter over time will also make the pitch rise
delay.delayTime.exponentialRampTo(0.01, 20);

return Tone.Offline(() => {
	const signal = new Tone.Signal(.1).toDestination();
	signal.exponentialRampTo(5, 0.3, 0.1);
}, 0.5, 1);
exponentialRampTo (
value:[object Object] ,
rampTime:Time ,
startTime?:Time
) => this

exponentialRampToValueAtTime #

Schedules an exponential continuous change in parameter value from the previous scheduled parameter value to the given value.


return Tone.Offline(() => {
	const signal = new Tone.Signal(1).toDestination();
	// the ramp starts from the previously scheduled value, which must be positive
	signal.setValueAtTime(1, 0.1);
	signal.exponentialRampToValueAtTime(0, 0.4);
}, 0.5, 1);
exponentialRampToValueAtTime (
value:[object Object] ,
time:Time
) => this

fan #

connect the output of this node to the rest of the nodes in parallel.


const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/conga-rhythm.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
fan (
...nodes:InputNode []
) => this

get #

Get the object's attributes.


const osc = new Tone.Oscillator();
console.log(osc.get());
get ( ) => SignalOptions<any >

static getDefaults #

Returns all of the default options belonging to the class.

getDefaults ( ) => SignalOptions<any >

getValueAtTime #

Get the signals value at the given time. Subsequent scheduling may invalidate the returned value.


const signal = new Tone.Signal().toDestination();
// ramp up to '8' over 3 seconds
signal.rampTo(8, 3);
// ramp back down to '0' over 3 seconds
signal.rampTo(0, 3, "+3");
setInterval(() => {
	// check the value every 100 ms
	console.log(signal.getValueAtTime(Tone.now()));
}, 100);
getValueAtTime (
time:Time
) => [object Object]

immediate #

Return the current time of the Context clock without any lookAhead.


setInterval(() => {
	console.log(Tone.immediate());
}, 100);
immediate ( ) => Seconds

linearRampTo #

Schedules an linear continuous change in parameter value from the current time and current value to the given value over the duration of the rampTime.


const delay = new Tone.FeedbackDelay(0.5, 0.98).toDestination();
// a short burst of noise through the feedback delay
const noise = new Tone.Noise().connect(delay).start().stop("+0.1");
// making the delay time shorter over time will also make the pitch rise
delay.delayTime.linearRampTo(0.01, 20);

return Tone.Offline(() => {
	const signal = new Tone.Signal(1).toDestination();
	signal.linearRampTo(0, 0.3, 0.1);
}, 0.5, 1);
linearRampTo (
value:[object Object] ,
rampTime:Time ,
startTime?:Time
) => this
this

linearRampToValueAtTime #

Schedules a linear continuous change in parameter value from the previous scheduled parameter value to the given value.


return Tone.Offline(() => {
	const signal = new Tone.Signal(0).toDestination();
	// the ramp starts from the previously scheduled value
	signal.setValueAtTime(0, 0.1);
	signal.linearRampToValueAtTime(1, 0.4);
}, 0.5, 1);
linearRampToValueAtTime (
value:[object Object] ,
time:Time
) => this

now #

Return the current time of the Context clock plus the lookAhead.


setInterval(() => {
	console.log(Tone.now());
}, 100);
now ( ) => Seconds

rampTo #

Ramps to the given value over the duration of the rampTime. Automatically selects the best ramp type (exponential or linear) depending on the units of the signal


const osc = new Tone.Oscillator().toDestination().start();
// schedule it to ramp either linearly or exponentially depending on the units
osc.frequency.rampTo("A2", 10);

const osc = new Tone.Oscillator().toDestination().start();
// schedule it to ramp starting at a specific time
osc.frequency.rampTo("A2", 10, "+2");
rampTo (
value:[object Object] ,
rampTime:Time ,
startTime?:Time
) => this

set #

Set multiple properties at once with an object.


const filter = new Tone.Filter().toDestination();
// set values using an object
filter.set({
	frequency: "C6",
	type: "highpass"
});
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/Analogsynth_octaves_highmid.mp3").connect(filter);
player.autostart = true;
set ( ) => this

setRampPoint #

Creates a schedule point with the current value at the current time. Automation methods like linearRampToValueAtTime and exponentialRampToValueAtTime require a starting automation value usually set by setValueAtTime. This method is useful since it will do a setValueAtTime with whatever the currently computed value at the given time is.


const osc = new Tone.Oscillator().toDestination().start();
// set the frequency to "G4" in exactly 1 second from now.
osc.frequency.setRampPoint("+1");
osc.frequency.linearRampToValueAtTime("C1", "+2");
setRampPoint (
time:Time
) => this

setTargetAtTime #

Start exponentially approaching the target value at the given time with a rate having the given time constant.

setTargetAtTime (
value:[object Object] ,
startTime:Time ,
timeConstant:number
) => this

setValueAtTime #

Schedules a parameter value change at the given time.


return Tone.Offline(() => {
	const osc = new Tone.Oscillator(20).toDestination().start();
	// set the frequency to 40 at exactly 0.25 seconds
	osc.frequency.setValueAtTime(40, 0.25);
}, 0.5, 1);
setValueAtTime (
value:[object Object] ,
time:Time
) => this

setValueCurveAtTime #

Sets an array of arbitrary parameter values starting at the given time for the given duration.


return Tone.Offline(() => {
	const signal = new Tone.Signal(1).toDestination();
	signal.setValueCurveAtTime([1, 0.2, 0.8, 0.1, 0], 0.2, 0.3);
}, 0.5, 1);
setValueCurveAtTime (
values:[object Object] [] ,
startTime:Time ,
duration:Time ,
scaling?:undefined | number
) => this

targetRampTo #

Start exponentially approaching the target value at the given time. Since it is an exponential approach it will continue approaching after the ramp duration. The rampTime is the time that it takes to reach over 99% of the way towards the value.


return Tone.Offline(() => {
	const signal = new Tone.Signal(1).toDestination();
	signal.targetRampTo(0, 0.3, 0.1);
}, 0.5, 1);
targetRampTo (
value:[object Object] ,
rampTime:Time ,
startTime?:Time
) => this

toDestination #

Connect the output to the context's destination node.


const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
toDestination ( ) => this

toFrequency #

Convert the input to a frequency number


const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
toFrequency (
freq:Frequency
) => Hertz

toMaster # DEPRECATED

Connect the output to the context's destination node. See toDestination

toMaster ( ) => this

toSeconds #

Convert the incoming time to seconds. This is calculated against the current Tone.Transport bpm


const gain = new Tone.Gain();
setInterval(() => console.log(gain.toSeconds("4n")), 100);
// ramp the tempo to 60 bpm over 30 seconds
Tone.getTransport().bpm.rampTo(60, 30);
toSeconds (
time?:Time
) => Seconds

toString #

Convert the class to a string


const osc = new Tone.Oscillator();
console.log(osc.toString());
toString ( ) => string

toTicks #

Convert the input time into ticks


const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));
toTicks (
time?:Time | TimeClass
) => Ticks