OmniOscillator aggregates all of the oscillator types into one.
const omniOsc = new Tone.OmniOscillator("C#4", "pwm").toDestination().start();
The base type of the oscillator. See Oscillator.baseType
const omniOsc = new Tone.OmniOscillator(440, "fmsquare4");
console.log(omniOsc.sourceType, omniOsc.baseType, omniOsc.partialCount);
The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The context belonging to the node.
The number of detuned oscillators when sourceType === "fat". See FatOscillator.count
Set this debug flag to log all events that happen in this class.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
Harmonicity is the frequency ratio between the carrier and the modulator oscillators. See AMOscillator or FMOscillator
Sources have no inputs
The modulationFrequency Signal of the oscillator when sourceType === "pwm" see PWMOscillator
Range: 0.1 to 5The modulation index when the sourceType === "fm" See FMOscillator.
The type of the modulator oscillator. Only if the oscillator is set to "am" or "fm" types. See AMOscillator or FMOscillator
Mute the output.
const osc = new Tone.Oscillator().toDestination().start();
// mute the output
osc.mute = true;
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The callback to invoke when the source is stopped.
The value is an empty array when the type is not "custom". This is not available on "pwm" and "pulse" oscillator types. See Oscillator.partials
The duration in seconds of one sample.
console.log(Tone.Transport.sampleTime);
The source type of the oscillator.
const omniOsc = new Tone.OmniOscillator(440, "fmsquare");
console.log(omniOsc.sourceType); // 'fm'
The detune spread between the oscillators when sourceType === "fat". See FatOscillator.count
Returns the playback state of the source, either "started" or "stopped".
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3", () => {
player.start();
console.log(player.state);
}).toDestination();
The type of the oscillator. Can be any of the basic types: sine, square, triangle, sawtooth. Or prefix the basic types with "fm", "am", or "fat" to use the FMOscillator, AMOscillator or FatOscillator types. The oscillator could also be set to "pwm" or "pulse". All of the parameters of the oscillator's class are accessible when the oscillator is set to that type, but throws an error when it's not.
const omniOsc = new Tone.OmniOscillator().toDestination().start();
omniOsc.type = "pwm";
// modulationFrequency is parameter which is available
// only when the type is "pwm".
omniOsc.modulationFrequency.value = 0.5;
The version number semver
The volume of the output in decibels.
const source = new Tone.PWMOscillator().toDestination();
source.volume.value = -6;
The width of the oscillator when sourceType === "pulse". See PWMOscillator.width
Connect the output of this node to the rest of the nodes in series.
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect from
The input to connect to
disconnect the output
connect the output of this node to the rest of the nodes in parallel.
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Returns all of the default options belonging to the class.
Return the current time of the Context clock without any lookAhead.
setInterval(() => {
console.log(Tone.immediate());
}, 100);
Return the current time of the Context clock plus the lookAhead.
setInterval(() => {
console.log(Tone.now());
}, 100);
Set multiple properties at once with an object.
const filter = new Tone.Filter();
// set values using an object
filter.set({
frequency: 300,
type: "highpass"
});
Start the source at the specified time. If no time is given, start the source now.
const source = new Tone.Oscillator().toDestination();
source.start("+0.5"); // starts the source 0.5 seconds from now
Stop the source at the specified time. If no time is given, stop the source now.
const source = new Tone.Oscillator().toDestination();
source.start();
source.stop("+0.5"); // stops the source 0.5 seconds from now
Sync the source to the Transport so that all subsequent
calls to start
and stop
are synced to the TransportTime
instead of the AudioContext time.
const osc = new Tone.Oscillator().toDestination();
// sync the source so that it plays between 0 and 0.3 on the Transport's timeline
osc.sync().start(0).stop(0.3);
// start the transport.
Tone.Transport.start();
// set it to loop once a second
Tone.Transport.loop = true;
Tone.Transport.loopEnd = 1;
Connect the output to the context's destination node.
const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
Convert the input to a frequency number
const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
Connect the output to the context's destination node. See toDestination
Convert the incoming time to seconds
const gain = new Tone.Gain();
console.log(gain.toSeconds("4n"));
Convert the class to a string
const osc = new Tone.Oscillator();
console.log(osc.toString());
Convert the input time into ticks
const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));
Unsync the source to the Transport. See Source.sync