Player is an audio file player with start, loop, and stop functions.
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/gong_1.mp3").toDestination();
// play as soon as the buffer is loaded
player.autostart = true;
Either the AudioBuffer or the url from which to load the AudioBuffer
The function to invoke when the buffer is loaded.
If the file should play as soon as the buffer is loaded.
The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
The audio buffer belonging to the player.
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The context belonging to the node.
Set this debug flag to log all events that happen in this class.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
Sources have no inputs
If the buffer should loop once it's over.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/breakbeat.mp3").toDestination();
player.loop = true;
player.autostart = true;
If loop is true, the loop will end at this position.
If loop is true, the loop will start at this position.
Mute the output.
const osc = new Tone.Oscillator().toDestination().start();
// mute the output
osc.mute = true;
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The callback to invoke when the source is stopped.
Normal speed is 1. The pitch will change with the playback rate.
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/femalevoices_aa2_A5.mp3").toDestination();
// play at 1/4 speed
player.playbackRate = 0.25;
// play as soon as the buffer is loaded
player.autostart = true;
If the buffer should be reversed
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/chime_1.mp3").toDestination();
player.autostart = true;
player.reverse = true;
The duration in seconds of one sample.
console.log(Tone.Transport.sampleTime);
Returns the playback state of the source, either "started" or "stopped".
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3", () => {
player.start();
console.log(player.state);
}).toDestination();
The version number semver
The volume of the output in decibels.
const source = new Tone.PWMOscillator().toDestination();
source.volume.value = -6;
Connect the output of this node to the rest of the nodes in series.
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect from
The input to connect to
disconnect the output
connect the output of this node to the rest of the nodes in parallel.
const player = new Tone.Player("https://tonejs.github.io/examples/audio/FWDL.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Returns all of the default options belonging to the class.
Return the current time of the Context clock without any lookAhead.
setInterval(() => {
console.log(Tone.immediate());
}, 100);
Load the audio file as an audio buffer. Decodes the audio asynchronously and invokes the callback once the audio buffer loads. Note: this does not need to be called if a url was passed in to the constructor. Only use this if you want to manually load a new url.
The url of the buffer to load. Filetype support depends on the browser.
Return the current time of the Context clock plus the lookAhead.
setInterval(() => {
console.log(Tone.now());
}, 100);
Stop and then restart the player from the beginning (or offset)
How long the sample should play. If no duration is given,it will default to the full length of the sample (minus any offset)
Seek to a specific time in the player's buffer. If the source is no longer playing at that time, it will stop.
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/gurgling_theremin_1.mp3", () => {
player.start();
// seek to the offset in 1 second from now
player.seek(0.4, "+1");
}).toDestination();
Set multiple properties at once with an object.
const filter = new Tone.Filter();
// set values using an object
filter.set({
frequency: 300,
type: "highpass"
});
Set the loop start and end. Will only loop if loop is set to true.
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/malevoices_aa2_F3.mp3").toDestination();
// loop between the given points
player.setLoopPoints(0.2, 0.3);
player.loop = true;
player.autostart = true;
Play the buffer at the given startTime. Optionally add an offset and/or duration which will play the buffer from a position within the buffer for the given duration.
How long the sample should play. If no duration is given, it will default to the full length of the sample (minus any offset)
Stop the source at the specified time. If no time is given, stop the source now.
const source = new Tone.Oscillator().toDestination();
source.start();
source.stop("+0.5"); // stops the source 0.5 seconds from now
Sync the source to the Transport so that all subsequent
calls to start
and stop
are synced to the TransportTime
instead of the AudioContext time.
const osc = new Tone.Oscillator().toDestination();
// sync the source so that it plays between 0 and 0.3 on the Transport's timeline
osc.sync().start(0).stop(0.3);
// start the transport.
Tone.Transport.start();
// set it to loop once a second
Tone.Transport.loop = true;
Tone.Transport.loopEnd = 1;
Connect the output to the context's destination node.
const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
Convert the input to a frequency number
const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
Connect the output to the context's destination node. See toDestination
Convert the incoming time to seconds
const gain = new Tone.Gain();
console.log(gain.toSeconds("4n"));
Convert the class to a string
const osc = new Tone.Oscillator();
console.log(osc.toString());
Convert the input time into ticks
const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));
Unsync the source to the Transport. See Source.sync