Thin wrapper around the native Web Audio BiquadFilterNode. BiquadFilter is similar to Filter but doesn't have the option to set the "rolloff" value.
The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The context belonging to the node.
Set this debug flag to log all events that happen in this class.
A detune value, in cents, for the frequency.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
The frequency of the filter
The gain of the filter. Its value is in dB units. The gain is only used for lowshelf, highshelf, and peaking filters.
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The Q factor of the filter. For lowpass and highpass filters the Q value is interpreted to be in dB. For these filters the nominal range is [−𝑄𝑙𝑖𝑚,𝑄𝑙𝑖𝑚] where 𝑄𝑙𝑖𝑚 is the largest value for which 10𝑄/20 does not overflow. This is approximately 770.63678. For the bandpass, notch, allpass, and peaking filters, this value is a linear value. The value is related to the bandwidth of the filter and hence should be a positive value. The nominal range is [0,3.4028235𝑒38], the upper limit being the most-positive-single-float. This is not used for the lowshelf and highshelf filters.
The duration in seconds of one sample.
console.log(Tone.Transport.sampleTime);
The type of this BiquadFilterNode. For a complete list of types and their attributes, see the Web Audio API
The version number semver
Connect the output of this node to the rest of the nodes in series.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/handdrum-loop.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect from
The input to connect to
disconnect the output
Dispose and disconnect
connect the output of this node to the rest of the nodes in parallel.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/conga-rhythm.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Returns all of the default options belonging to the class.
Get the frequency response curve. This curve represents how the filter responses to frequencies between 20hz-20khz.
The number of values to return
Return the current time of the Context clock without any lookAhead.
setInterval(() => {
console.log(Tone.immediate());
}, 100);
Return the current time of the Context clock plus the lookAhead.
setInterval(() => {
console.log(Tone.now());
}, 100);
Set multiple properties at once with an object.
const filter = new Tone.Filter();
// set values using an object
filter.set({
frequency: 300,
type: "highpass"
});
Connect the output to the context's destination node.
const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
Convert the input to a frequency number
const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
Connect the output to the context's destination node. See toDestination
Convert the incoming time to seconds
const gain = new Tone.Gain();
console.log(gain.toSeconds("4n"));
Convert the class to a string
const osc = new Tone.Oscillator();
console.log(osc.toString());
Convert the input time into ticks
const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));