Oscillator supports a number of features including phase rotation, multiple oscillator types (see Oscillator.type), and Transport syncing (see Oscillator.syncFrequency).
// make and start a 440hz sine tone
const osc = new Tone.Oscillator(440, "sine").toDestination().start();
The oscillator type without the partialsCount appended to the end
const osc = new Tone.Oscillator();
osc.type = "sine2";
console.log(osc.baseType); // "sine"
The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The context belonging to the node.
Set this debug flag to log all events that happen in this class.
The detune control signal.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
The frequency control.
Sources have no inputs
Mute the output.
const osc = new Tone.Oscillator().toDestination().start();
// mute the output
osc.mute = true;
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The callback to invoke when the source is stopped.
'partialCount' offers an alternative way to set the number of used partials. When partialCount is 0, the maximum number of partials are used when representing the waveform using the periodicWave. When 'partials' is set, this value is not settable, but equals the length of the partials array. A square wave wave is composed of only odd harmonics up through the harmonic series. Partial count can limit the number of harmonics which are used to generate the waveform.
const osc = new Tone.Oscillator("C3", "square").toDestination().start();
osc.partialCount = 1;
setInterval(() => {
osc.partialCount++;
console.log(osc.partialCount);
}, 500);
The partials describes the relative amplitude of each of the harmonics of the oscillator. The first value in the array is the first harmonic (i.e. the fundamental frequency), the second harmonic is an octave up, the third harmonic is an octave and a fifth, etc. The resulting oscillator output is composed of a sine tone at the relative amplitude at each of the harmonic intervals.
const osc = new Tone.Oscillator("F3").toDestination().start();
setInterval(() => {
// generate 8 random partials
osc.partials = new Array(8).map(() => Math.random());
}, 1000);
The phase is the starting position within the oscillator's cycle. For example a phase of 180 would start halfway through the oscillator's cycle.
return Tone.Offline(() => {
const osc = new Tone.Oscillator({
frequency: 20,
phase: 90
}).toDestination().start();
}, 0.1, 1);
The duration in seconds of one sample.
console.log(Tone.Transport.sampleTime);
Returns the playback state of the source, either "started" or "stopped".
const player = new Tone.Player("https://tonejs.github.io/audio/berklee/ahntone_c3.mp3", () => {
player.start();
console.log(player.state);
}).toDestination();
The oscillator's type. Also capable of setting the first x number of partials of the oscillator. For example: "sine4" would set be the first 4 partials of the sine wave and "triangle8" would set the first 8 partials of the triangle wave.
return Tone.Offline(() => {
const osc = new Tone.Oscillator().toDestination().start();
osc.type = "sine2";
}, 0.1, 1);
The version number semver
The volume of the output in decibels.
const source = new Tone.PWMOscillator().toDestination();
source.volume.value = -6;
Returns an array of values which represents the waveform.
Connect the output of this node to the rest of the nodes in series.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/handdrum-loop.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect from
The input to connect to
disconnect the output
connect the output of this node to the rest of the nodes in parallel.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/conga-rhythm.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Returns all of the default options belonging to the class.
Returns the initial value of the oscillator when stopped. E.g. a "sine" oscillator with phase = 90 would return an initial value of -1.
Return the current time of the Context clock without any lookAhead.
setInterval(() => {
console.log(Tone.immediate());
}, 100);
Return the current time of the Context clock plus the lookAhead.
setInterval(() => {
console.log(Tone.now());
}, 100);
Set multiple properties at once with an object.
const filter = new Tone.Filter();
// set values using an object
filter.set({
frequency: 300,
type: "highpass"
});
Start the source at the specified time. If no time is given, start the source now.
const source = new Tone.Oscillator().toDestination();
source.start("+0.5"); // starts the source 0.5 seconds from now
Stop the source at the specified time. If no time is given, stop the source now.
const source = new Tone.Oscillator().toDestination();
source.start();
source.stop("+0.5"); // stops the source 0.5 seconds from now
Sync the source to the Transport so that all subsequent
calls to start
and stop
are synced to the TransportTime
instead of the AudioContext time.
const osc = new Tone.Oscillator().toDestination();
// sync the source so that it plays between 0 and 0.3 on the Transport's timeline
osc.sync().start(0).stop(0.3);
// start the transport.
Tone.Transport.start();
// set it to loop once a second
Tone.Transport.loop = true;
Tone.Transport.loopEnd = 1;
Sync the signal to the Transport's bpm. Any changes to the transports bpm, will also affect the oscillators frequency.
const osc = new Tone.Oscillator().toDestination().start();
osc.frequency.value = 440;
// the ratio between the bpm and the frequency will be maintained
osc.syncFrequency();
// double the tempo
Tone.Transport.bpm.value *= 2;
// the frequency of the oscillator is doubled to 880
Connect the output to the context's destination node.
const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
Convert the input to a frequency number
const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
Connect the output to the context's destination node. See toDestination
Convert the incoming time to seconds
const gain = new Tone.Gain();
console.log(gain.toSeconds("4n"));
Convert the class to a string
const osc = new Tone.Oscillator();
console.log(osc.toString());
Convert the input time into ticks
const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));
Unsync the source to the Transport. See Source.sync
Unsync the oscillator's frequency from the Transport. See Oscillator.syncFrequency