Pass in an object which maps the note's pitch or midi value to the url, then you can trigger the attack and release of that note like other instruments. By automatically repitching the samples, it is possible to play pitches which were not explicitly included which can save loading time.
const sampler = new Tone.Sampler({
urls: {
A1: "A1.mp3",
A2: "A2.mp3",
},
baseUrl: "https://tonejs.github.io/audio/casio/",
onload: () => {
sampler.triggerAttackRelease(["C1", "E1", "G1", "B1"], 0.5);
}
}).toDestination();
An object of samples mapping either Midi Note Numbers orScientific Pitch Notation to the url of that sample.
The callback to invoke when all of the samples are loaded.
The root URL of all of the samples, which is prepended to all the URLs.
An object of samples mapping either Midi Note Numbers orScientific Pitch Notation to the url of that sample.
The envelope applied to the beginning of the sample.
Range: 0 to 1The number of seconds of 1 processing block (128 samples)
console.log(Tone.Destination.blockTime);
channelCount is the number of channels used when up-mixing and down-mixing connections to any inputs to the node. The default value is 2 except for specific nodes where its value is specially determined.
channelCountMode determines how channels will be counted when up-mixing and down-mixing connections to any inputs to the node. The default value is "max". This attribute has no effect for nodes with no inputs.
channelInterpretation determines how individual channels will be treated when up-mixing and down-mixing connections to any inputs to the node. The default value is "speakers".
The context belonging to the node.
The shape of the attack/release curve. Either "linear" or "exponential"
Set this debug flag to log all events that happen in this class.
Indicates if the instance was disposed. 'Disposing' an instance means that all of the Web Audio nodes that were created for the instance are disconnected and freed for garbage collection.
The instrument only has an output
The number of inputs feeding into the AudioNode. For source nodes, this will be 0.
const node = new Tone.Gain();
console.log(node.numberOfInputs);
The number of outputs of the AudioNode.
const node = new Tone.Gain();
console.log(node.numberOfOutputs);
The envelope applied to the end of the envelope.
Range: 0 to 1The duration in seconds of one sample.
console.log(Tone.Transport.sampleTime);
The version number semver
The volume of the output in decibels.
const amSynth = new Tone.AMSynth().toDestination();
amSynth.volume.value = -6;
amSynth.triggerAttackRelease("G#3", 0.2);
Add a note to the sampler.
Either the url of the buffer, or a buffer which will be added with the given name.
The callback to invoke when the url is loaded.
Connect the output of this node to the rest of the nodes in series.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/handdrum-loop.mp3");
player.autostart = true;
const filter = new Tone.AutoFilter(4).start();
const distortion = new Tone.Distortion(0.5);
// connect the player to the filter, distortion and then to the master output
player.chain(filter, distortion, Tone.Destination);
connect the output of a ToneAudioNode to an AudioParam, AudioNode, or ToneAudioNode
The output to connect from
The input to connect to
disconnect the output
connect the output of this node to the rest of the nodes in parallel.
const player = new Tone.Player("https://tonejs.github.io/audio/drum-samples/conga-rhythm.mp3");
player.autostart = true;
const pitchShift = new Tone.PitchShift(4).toDestination();
const filter = new Tone.Filter("G5").toDestination();
// connect a node to the pitch shift and filter in parallel
player.fan(pitchShift, filter);
Get the object's attributes.
const osc = new Tone.Oscillator();
console.log(osc.get());
Returns all of the default options belonging to the class.
Return the current time of the Context clock without any lookAhead.
setInterval(() => {
console.log(Tone.immediate());
}, 100);
Return the current time of the Context clock plus the lookAhead.
setInterval(() => {
console.log(Tone.now());
}, 100);
Set multiple properties at once with an object.
const filter = new Tone.Filter();
// set values using an object
filter.set({
frequency: 300,
type: "highpass"
});
Sync the instrument to the Transport. All subsequent calls of triggerAttack and triggerRelease will be scheduled along the transport.
const fmSynth = new Tone.FMSynth().toDestination();
fmSynth.volume.value = -6;
fmSynth.sync();
// schedule 3 notes when the transport first starts
fmSynth.triggerAttackRelease("C4", "8n", 0);
fmSynth.triggerAttackRelease("E4", "8n", "8n");
fmSynth.triggerAttackRelease("G4", "8n", "4n");
// start the transport to hear the notes
Tone.Transport.start();
Connect the output to the context's destination node.
const osc = new Tone.Oscillator("C2").start();
osc.toDestination();
Convert the input to a frequency number
const gain = new Tone.Gain();
console.log(gain.toFrequency("4n"));
Connect the output to the context's destination node. See toDestination
Convert the incoming time to seconds
const gain = new Tone.Gain();
console.log(gain.toSeconds("4n"));
Convert the class to a string
const osc = new Tone.Oscillator();
console.log(osc.toString());
Convert the input time into ticks
const gain = new Tone.Gain();
console.log(gain.toTicks("4n"));
Start the instrument's note.
Invoke the attack phase, then after the duration, invoke the release.
Trigger the release phase of the current note.
Unsync the instrument from the Transport